Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If the sum of the first 2n terms of the A.P. 2, 5, 8, ........... is equal to the sum of the first n terms of the A.P. 57, 59, 61, ........, then n equals

Sequences and Series

Solution:

$ 2,5,8, \ldots \ldots . . . . . A . P . $
$S _{2 n }= n [4+(2 n -1) 3] $
$S _{2 n }= n [6 n +1] $
$57,59,61, \ldots \ldots . . . .$
$S _{ n }=\frac{ n }{2}[2 \times 57+( n -1) \times 2]$
$S _{ n }= n [57+ n -1]= n [ n +56] $
$S _{ n }= S _{2 n }$
$n ( n +56)= n (6 n +1) $
$n \neq 0 \therefore n +56=6 n +1$
$5 n =55 $
$\therefore n =11 $