Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If the sum of odd numbered terms and the sum of even numbered terms in the expansion of (x + a)n are A and B respectively, then the value of (x2 - a2)n is
Q. If the sum of odd numbered terms and the sum of even numbered terms in the expansion of
(
x
+
a
)
n
are
A
and
B
respectively, then the value of
(
x
2
−
a
2
)
n
is
1719
229
BITSAT
BITSAT 2016
Report Error
A
A
2
−
B
2
0%
B
A
2
+
B
2
0%
C
4
A
B
100%
D
None
0%
Solution:
(
x
+
a
)
n
=
n
C
0
x
n
+
n
C
1
x
n
−
1
a
+
……………
=
(
n
C
0
x
n
+
n
C
2
x
n
−
2
a
2
+
………
)
+
(
n
C
1
x
n
−
1
a
+
n
C
3
x
n
−
3
a
3
+
……
)
Given
:
A
=
n
C
0
x
n
+
n
C
2
x
n
−
2
a
2
+
……………
B
=
n
C
1
x
n
−
1
⋅
a
+
n
C
3
x
n
−
3
a
3
+
…………
⇒
(
x
+
a
)
n
=
A
+
B
(
x
−
a
)
n
=
n
C
0
x
n
−
n
C
1
x
n
−
1
a
+
n
C
2
x
n
−
2
a
2
−
………
.
=
(
n
C
0
x
n
+
n
C
2
x
n
−
2
a
2
+
………
)
−
(
n
C
1
x
n
−
1
a
+
n
C
3
x
n
−
3
a
3
+
…
)
⇒
(
x
−
a
)
n
=
A
−
B
∴
(
x
2
−
a
2
)
n
=
(
x
+
a
)
n
⋅
(
x
−
a
)
n
=
(
A
+
B
)
(
A
−
B
)
=
A
2
−
B
2