Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If the sum of odd numbered terms and the sum of even numbered terms in the expansion of $(x + a)^n$ are $A$ and $B$ respectively, then the value of $(x^2 - a^2)^n$ is

BITSATBITSAT 2016

Solution:

$(x+a)^{n}={ }^{n} C_{0} x^{n}+{ }^{n} C_{1} x^{n-1} a+\ldots \ldots \ldots \ldots \ldots$
$=\left({ }^{n} C_{0} x^{n}+{ }^{n} C_{2} x^{n-2} a^{2}+\ldots \ldots \ldots\right)$
$+\left({ }^{n} C_{1} x^{n-1} a+{ }^{n} C_{3} x^{n-3} a^{3}+\ldots \ldots\right)$
Given $: A={ }^{n} C_{0} x^{n}+{ }^{n} C_{2} x^{n-2} a^{2}+\ldots \ldots \ldots \ldots \ldots$
$B={ }^{n} C_{1} x^{n-1} \cdot a+{ }^{n} C_{3} x^{n-3} a^{3}+\ldots \ldots \ldots \ldots$
$\Rightarrow (x+a)^{n}=A+B$
$(x-a)^{n}={ }^{n} C_{0} x^{n}-{ }^{n} C_{1} x^{n-1} a+{ }^{n} C_{2} x^{n-2} a^{2}-\ldots \ldots \ldots .$
$=\left({ }^{n} C_{0} x^{n}+{ }^{n} C_{2} x^{n-2} a^{2}+\ldots \ldots \ldots\right)$
$-\left({ }^{n} C_{1} x^{n-1} a+{ }^{n} C_{3} x^{n-3} a^{3}+\ldots\right)$
$\Rightarrow (x-a)^{n}=A-B$
$\therefore \left(x^{2}-a^{2}\right)^{n}=(x+a)^{n} \cdot(x-a)^{n}$
$=(A+B)(A-B)=A^{2}-B^{2}$