Q.
If the substitution x=tan−1(t) transforms the differential equation dx2d2y+xydxdy+sec2x=0 into a differential equation 1+t2dt2d2y+2t+ytan−1(t)dtdy+k=0, then k is equal to
dxdy=dtdy⋅dxdt=(1+t2)dtdy...(1) dx2d2y=dxd(dxdy)=[dtd(dxdy)]⋅dxdt=[(1+t2)dt2d2y+(2t)dtdy]⋅(1+t2)...(2)
Also, t=tanx⇒(sec)2x=1+t2...(3)
Putting these values, we get [(1+t2)dt2d2y+(2t)dtdy]⋅(1+t2)+(tan)−1(t)⋅y⋅(1+t2)dtdy+(1+t2)=0 ⇒(1+t2)dt2d2y+(2t+(tan)−1(t)⋅y)dtdy+1=0
Comparing, we get k=1 .