Q. If the substitution $x=\tan ^{-1}(t)$ transforms the differential equation $\frac{d^{2} y}{d x^{2}}+x$ $y \frac{d y}{d x}+\sec ^{2} x=0$ into a differential equation $1+t^{2} \frac{d^{2} y}{d t^{2}}+$ $2 t+y \tan ^{-1}(t) \frac{d y}{d t}+k=0$, then $k$ is equal to
NTA AbhyasNTA Abhyas 2022
Solution: