Comparing the given equations of lines r=(4i^−j^)+λ(i^+2j^−3k^) and r=(i^−j^+2k^)+μ(2i^+4j^−5k^) with the general equations of lines r=a1+λb1 and r=a2+μb2 we get a1=4i^−j^,a2=i^−j^+2k^b1=i^+2j^−3k^,b2=2i^+4j^−5k^, We know that the shortest distance between the lines r=a1+λb1 and r=a2+μb2 is given by d=∣∣∣b1×b2∣(a2−a1).(b1×b2)∣∣ where a2−a1=(i^−j^−2k^)−(4i^−j^)=−3i^+2k^=−3i^+0j^+2k^ and b1×b2=∣∣i^12j^24k^−3−5∣∣=2i^−j^+0k^,⇒∣b1×b2∣=4+1+0=5∴d=∣∣5(−3i^+0j^+2k^).(2i^−j^+0k)∣∣=∣∣−56∣∣⇒d=56