Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If the roots of the equation 5x2-7x+k=0 are reciprocal of each other, then value of k is
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. If the roots of the equation $ 5{{x}^{2}}-7x+k=0 $ are reciprocal of each other, then value of k is
Jamia
Jamia 2012
A
5
B
2
C
3
D
1
Solution:
Comparing the given equations of lines $ \overrightarrow{r}=(4\hat{i}-\hat{j})+\lambda (\hat{i}+2\hat{j}-3\hat{k}) $ and $ \overrightarrow{r}=(\hat{i}-\hat{j}+2\hat{k})+\mu (2\hat{i}+4\hat{j}-5\hat{k}) $ with the general equations of lines $ \overrightarrow{r}={{\overrightarrow{a}}_{1}}+\lambda {{\overrightarrow{b}}_{1}} $ and $ \overrightarrow{r}={{\overrightarrow{a}}_{2}}+\mu {{\overrightarrow{b}}_{2}} $ we get $ {{\overrightarrow{a}}_{1}}=4\hat{i}-\hat{j},\text{ }{{\overrightarrow{a}}_{2}}=\hat{i}-\hat{j}+2\hat{k} $ $ {{\overrightarrow{b}}_{1}}=\hat{i}+2\hat{j}-3\hat{k},{{\overrightarrow{b}}_{2}}=2\hat{i}+4\hat{j}-5\hat{k}, $ We know that the shortest distance between the lines $ \overrightarrow{r}={{\overrightarrow{a}}_{1}}+\lambda {{\overrightarrow{b}}_{1}} $ and $ \overrightarrow{r}={{\overrightarrow{a}}_{2}}+\mu {{\overrightarrow{b}}_{2}} $ is given by $ d=\left| \frac{({{\overrightarrow{a}}_{2}}-{{\overrightarrow{a}}_{1}}).({{\overrightarrow{b}}_{1}}\times {{\overrightarrow{b}}_{2}})}{|{{\overrightarrow{b}}_{1}}\times {{\overrightarrow{b}}_{2}}|} \right| $ where $ {{\overrightarrow{a}}_{2}}-{{\overrightarrow{a}}_{1}}=(\hat{i}-\hat{j}-2\hat{k})-(4\hat{i}-\hat{j}) $ $ =-3\hat{i}+2\hat{k} $ $ =-3\hat{i}+0\hat{j}+2\hat{k} $ and $ {{\overrightarrow{b}}_{1}}\times {{\overrightarrow{b}}_{2}}=\left| \begin{matrix} {\hat{i}} & {\hat{j}} & {\hat{k}} \\ 1 & 2 & -3 \\ 2 & 4 & -5 \\ \end{matrix} \right| $ $ =2\hat{i}-\hat{j}+0\hat{k}, $ $ \Rightarrow $ $ |{{\overrightarrow{b}}_{1}}\times {{\overrightarrow{b}}_{2}}|=\sqrt{4+1+0}=\sqrt{5} $ $ \therefore $ $ d=\left| \frac{(-3\hat{i}+0\hat{j}+2\hat{k}).(2\hat{i}-\hat{j}+0k)}{\sqrt{5}} \right| $ $ =\left| -\frac{6}{\sqrt{5}} \right| $ $ \Rightarrow $ $ d=\frac{6}{\sqrt{5}} $