Q.
If the roots of the cubic equation (m+1)x3−(m2+2)x2−(m2+2)x+m+1=0;(m∈R) form a non-constant arithmetic progression and one of the roots does not depend on m, then the sum of all possible values of m is S. Find the value of 100S.
29
99
Complex Numbers and Quadratic Equations
Report Error
Answer: 150
Solution:
Now, 3a=m+1m2+2....(1) a(a2−d2)=(m+1)−(m+1)=−1 ....(2)
and a(a−d)+a(a+d)+(a−d)(a+d)=(m+1)−(m2+2)....(3)
From (1) and (3), we get 3a2−d2=−3a ....(4)
From (2) and (4), we get after eliminating 'd' 3a2−(a2+a1)=−3a⇒2a3+3a2−1=0⇒(a+1)(2a2+a−1)=0⇒(a+1)2(2a−1)=0 ⇒a=21,−1.
Case-I : If a=−1, then from equation (4), d=0, which is not possible.
Case-II: If a=21, we get
Put in equation (1) 21=3(m+1)m2+2⇒3m+3=2m2+4 ⇒2m2−3m+1=0⇒2m2−2m−m+1=0 2m(m−1)−1(m−1)=0⇒(m−1)(2m−1)=0 Hence, m=1,21⇒S=1+21=23⇒100S=150