Q. If the roots of the cubic equation $(m+1) x^3-\left(m^2+2\right) x^2-\left(m^2+2\right) x+m+1=0 ;(m \in R)$ form a non-constant arithmetic progression and one of the roots does not depend on $m$, then the sum of all possible values of $m$ is $S$. Find the value of $100 S$.
Complex Numbers and Quadratic Equations
Solution: