Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If the points (a1, b1), (a2, b2) and (a1 + a2, b1 + b2) are collinear, then
Q. If the points
(
a
1
,
b
1
)
,
(
a
2
,
b
2
)
and
(
a
1
+
a
2
,
b
1
+
b
2
)
are collinear, then
3625
202
Determinants
Report Error
A
a
1
b
2
=
a
2
b
1
59%
B
a
1
+
a
2
=
b
1
+
b
2
22%
C
a
2
b
2
=
a
1
b
1
11%
D
a
1
+
b
1
=
a
2
+
b
2
8%
Solution:
The given points are collinear.
∴
2
1
∣
∣
a
1
a
2
a
1
+
a
2
b
1
b
2
b
1
+
b
2
1
1
1
∣
∣
=
0
Applying
R
2
→
R
2
−
R
1
,
R
3
→
R
3
−
R
1
, we get
∣
∣
a
1
a
2
−
a
1
a
2
b
1
b
2
−
b
1
b
2
1
0
0
∣
∣
=
0
Expanding along
C
3
, we get
b
2
(
a
2
−
a
1
)
−
a
2
(
b
2
−
b
1
)
=
0
⇒
−
a
1
b
2
+
a
2
b
1
=
0
⇒
a
1
b
2
=
a
2
b
1