Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If the points $\left(a_{1}, b_{1}\right)$, $\left(a_{2}, b_{2}\right)$ and $\left(a_{1} + a_{2}, b_{1} + b_{2}\right)$ are collinear, then

Determinants

Solution:

The given points are collinear.

$\therefore \quad\frac{1}{2}\left|\begin{matrix}a_{1}&b_{1}&1\\ a_{2}&b_{2}&1\\ a_{1}+a_{2}&b_{1}+b_{2}&1\end{matrix}\right|=0$

Applying $R_{2}\rightarrow R_{2}- R_{1}, R_{3}\rightarrow R_{3}- R_{1}$, we get

$\left|\begin{matrix}a_{1}&b_{1}&1\\ a_{2}-a_{1}&b_{2}-b_{1}&0\\ a_{2}&b_{2}&0\end{matrix}\right|=0$

Expanding along $C_{3}$, we get

$b_{2}\left(a_{2}-a_{1}\right)-a_{2}\left(b_{2}-b_{1}\right)=0$

$\Rightarrow \quad-a_{1}b_{2}+a_{2}b_{1}=0 \Rightarrow a_{1}b_{2}=a_{2}b_{1}$