Let the parabola y=−x2−2x+k and the parabola y=−21x2−4x+3 touches the point P(x1,y1) .
Now, y=−x2−2x+k (dxdy)=−2x−2 (dxdy)(x1,y1)=−2x1−2...(i)
and y=−21x2−4x+3 (dxdy)=−x−4 (dxdy)(x1,y1)=x1−4...(ii)
Since, parabola touches of (x1,y1). ∴ Slope of their tangents are equal −2x1−2=−x1−4 ∴x1=2
put the value of x1 in y1=−21x12−4x1+3
we get y1=−21(2)2−4(2)+3=−7 ∴y1=−x12−2x1+k −7=−4−4+k ∴k=1