Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If the parabola y = -x2 - 2x +k touches the parabola y = (1/2) x2 - 4x + 3, then the value of k is
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. If the parabola $y = -x^2 - 2x +k$ touches the parabola $y = \frac{1}{2} x^2 - 4x + 3$, then the value of k is
UPSEE
UPSEE 2019
A
1
45%
B
2
9%
C
3
45%
D
4
0%
Solution:
Let the parabola $ y = - x^2 - 2x + k$ and the parabola $ y = - \frac{1}{2}x^2 - 4x +3 $ touches the point $ P( x_1 , y_1)$ .
Now, $y = -x^{2} -2x +k $
$ \left(\frac{dy}{dx} \right) = -2x - 2 $
$ \left(\frac{dy}{dx}\right)_{\left(x_1, y_1\right)} = - 2x_{1} -2 \quad...\left(i\right) $
and $y = -\frac{1}{2} x^{2} -4x +3 $
$\left(\frac{dy}{dx}\right) = -x-4 $
$ \left(\frac{dy}{dx}\right)_{\left(x_1, y_1\right)} = x_{1} -4 \quad...\left(ii\right) $
Since, parabola touches of $(x_1, y_1)$.
$ ∴$ Slope of their tangents are equal
$ − 2x_1 - 2 = - x_1 - 4$
$∴ x_1 = 2$
put the value of $x_1$ in $y_1 = -\frac{1}{2}x_1^2 - 4x_1 + 3$
we get $y_1 = -\frac{1}{2} (2)^2 - 4(2) +3 = - 7$
$ ∴ y_1 = - x_1^2 -2 x_1 + k $
$− 7 = - 4 - 4 + k $
$∴ k = 1$