Solving x2=ay with y−2x=1, x2=a(1+2x)⇒x2−2ax−a=0
Let x1 & x2 are the roots
so, (x1−x2)2=(2a)2−4(−a)=4a(a+1)
also, (y1−y2)2=((2x1+1)−(2x2+1)2=4(x1−x2)2=16a(a+1))
now (x1−x2)2+(y1−y2)2=4a(a+1)+16a(a+1)=40 ⇒20a(a+1)=40⇒a2+a−2=0⇒a2+a−2=0⇒a=−2,1