The equation of the normal at P(θ) on the ellipse is 4xsecθ−3ycosecθ=7
This meets the coordinate axes at M(47cosθ,0),N(0,−37sinθ) ∴PM2=(4−47)2cos2θ+9sin2θ =169(9cos2θ+16sin2θ) PN2=16cos2θ+(3+37)2sinθ =916(9cos2θ+16sin2θ) ∴PM2:PN2=92:162 ⇒∣PM∣:∣PN∣=9:16