Thank you for reporting, we will resolve it shortly
Q.
If the normal at any point P of the ellipse x216+y29=1 meets the coordinate axes at M and N respectively, then |PM|:|PN| equals
Conic Sections
Solution:
The equation of the normal at P(θ) on the ellipse is 4xsecθ−3ycosecθ=7
This meets the coordinate axes at M(74cosθ,0),N(0,−73sinθ) ∴PM2=(4−74)2cos2θ+9sin2θ =916(9cos2θ+16sin2θ) PN2=16cos2θ+(3+73)2sinθ =169(9cos2θ+16sin2θ) ∴PM2:PN2=92:162 ⇒|PM|:|PN|=9:16