Q.
If the matrix A=[α20α](∀α∈R,α>0) and ∣∣2A2−2A∣∣=144, then the value of ∣A∣+tr(A) is equal to (where tr(A) represent the trace of the matrix A i.e. the sum of all the principal diagonal elements of the matrix A and ∣A∣ is the determinant value of A )
2115
212
NTA AbhyasNTA Abhyas 2020Matrices
Report Error
Solution:
∣∣2A2−2A∣∣=144 22∣A∣∣A−I∣=144 ⇒(α)2(α−1)2=36 α(α−1)=6 or −6 α2−α−6=0 or α2−α+6=0 (α−3)(α+2)=0 or α=2×11±1−24 α=3 or −2 (rejected) or 21±i223 (rejected) ∴tr(A)=2α=6 ∣A∣=α2=9 ∣A∣+tr(A)=15