Q. If the matrix $A=\begin{bmatrix} \alpha & 0 \\ 2 & \alpha \end{bmatrix}$ $\left(\forall \alpha \in R , \alpha > 0\right)$ and $\left|2 A^{2} - 2 A\right|=144,$ then the value of $\left|A\right|+tr\left(A\right)$ is equal to (where $t_{r}\left(A\right)$ represent the trace of the matrix $A$ i.e. the sum of all the principal diagonal elements of the matrix $A$ and $\left|A\right|$ is the determinant value of $A$ )
NTA AbhyasNTA Abhyas 2020Matrices
Solution: