Q.
If the integral 0∫10ex−[x][sin2πx]dx=αe−1+βe−21+γ, where α,β,γ are integers and [x] denotes the greatest integer less than or equal to x, then the value of α+β+γ is equal to :
Let I=0∫10ex−[x][sin2πx]dx=0∫10e{x}[sin2πx]dx
Function f(x)=e{x}[sin2πx] is periodic with period '1' Therefore I=100∫1e{x}[sin2πx]dx =100∫1ex[sin2πx]dx =10(0∫1/2ex[sin2πx]dx+1/2∫1ex[sin2πx]dx) =10(0+1/2∫1ex(−1)dx) =−101/2∫1e−xdx =10(e−1−e−1/2)
Now, 10⋅e−1−10⋅e−1/2=αe−1+βe−1/2+γ (given) ⇒α=10,β=−10,γ=0 ⇒α+β+γ=0