Q. If the integral $\int\limits_{0}^{10} \frac{[\sin 2 \pi x]}{e^{x-[x]}} d x=\alpha e^{-1}+\beta e^{-\frac{1}{2}}+\gamma$, where $\alpha, \beta, \gamma$ are integers and $[ x ]$ denotes the greatest integer less than or equal to $x$, then the value of $\alpha+\beta+\gamma$ is equal to :
Solution: