Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If the integral I=∫ (x √x - 3 x + 3 √x - 1/x - 2 √x + 1)dx =f(x)+C (where, x>0 and C is the constant of integration) and f(1)=(- 1/3) , then the value of f(9) is equal to
Q. If the integral
I
=
∫
x
−
2
x
+
1
x
x
−
3
x
+
3
x
−
1
d
x
=
f
(
x
)
+
C
(where,
x
>
0
and
C
is the constant of integration) and
f
(
1
)
=
3
−
1
, then the value of
f
(
9
)
is equal to
75
169
NTA Abhyas
NTA Abhyas 2022
Report Error
A
3
B
6
C
9
D
12
Solution:
Given integral is
I
=
∫
(
x
−
1
)
2
(
x
−
1
)
3
d
x
=
∫
(
x
−
1
)
d
x
=
3
2
x
2
3
−
x
+
C
∴
f
(
x
)
=
3
2
x
2
3
−
x
⇒
f
(
9
)
=
18
−
9
=
9