Q. If the integral $I=\int \frac{x \sqrt{x} - 3 x + 3 \sqrt{x} - 1}{x - 2 \sqrt{x} + 1}dx$ $=f\left(x\right)+C$ (where, $x>0$ and $C$ is the constant of integration) and $f\left(1\right)=\frac{- 1}{3}$ , then the value of $f\left(9\right)$ is equal to
NTA AbhyasNTA Abhyas 2022
Solution: