If f(x) is continuous at x=0, RHL=LHL=f(0) x→0+limf(x)=x→0+limx2+1−1cos2x−sin2x−1⋅x2+1+1x2+1+1 (Rationalisation) x→0+lim−x22sin2x⋅(x2+1+1)=−4 x→0−limf(x)=x→0−limx1ℓn(1−bx1+ax) x→0−lim(ax)⋅aℓn(1+ax)+(−bx)⋅bℓn(1−bx) =a1+b1
So a1+b1=−4=k ⇒a1+b1+k4 =−4−1=−5