Q.
If the function $f ( x )=\begin{cases}\frac{1}{ x } \log _{ e }\left(\frac{1+\frac{ x }{ a }}{1-\frac{ x }{ b }}\right) & , \quad x <0 \\ k & , \quad x =0 \\ \frac{\cos ^{2} x -\sin ^{2} x -1}{\sqrt{ x ^{2}+1}-1} & , \quad x >0\end{cases}$
is continuous at $x=0$, then $\frac{1}{a}+\frac{1}{b}+\frac{4}{k}$ is equal to:
Solution: