Q. If the function $f(x)=\begin{cases} (1+|\cos x|) \frac{\lambda}{|\cos x|} & , 0< x < \frac{\pi}{2} \\ \mu & , \quad x=\frac{\pi}{2} \\ \frac{\cot 6 x}{e^{\cot 4 x}} & \frac{\pi}{2}< x< \pi \end{cases}$ is continuous at $x=\frac{\pi}{2}$, then $9 \lambda+6 \log _{ e } \mu+\mu^6- e ^{6 \lambda}$ is equal to
Solution: