Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If the circles x2+y2+6 x+8 y+16=0 and x2+y2+2(3-√3) x+x+2(4-√6) y = k +6 √3+8 √6, k >0 touch internally at the point P(α, β), then (α+√3)2+(β+√6)2 is equal to
Q. If the circles
x
2
+
y
2
+
6
x
+
8
y
+
16
=
0
and
x
2
+
y
2
+
2
(
3
−
3
)
x
+
x
+
2
(
4
−
6
)
y
=
k
+
6
3
+
8
6
,
k
>
0
touch internally at the point
P
(
α
,
β
)
, then
(
α
+
3
)
2
+
(
β
+
6
)
2
is equal to _______
2558
152
JEE Main
JEE Main 2022
Conic Sections
Report Error
Answer:
25
Solution:
C
1
(
−
3
,
−
4
)
r
1
=
25
−
16
=
3
C
2
=
(
−
3
+
3
,
−
4
+
6
)
r
2
=
34
+
k
C
1
C
2
=
∣
r
1
−
r
2
∣
C
1
C
2
=
3
+
6
=
3
3
=
∣3
−
34
+
k
∣
⇒
k
=
2
r
2
=
6
(
α
,
β
)
=
(
−
3
−
3
,
−
4
−
6
)
(
α
+
3
)
2
+
(
β
+
6
)
2
=
9
+
16
=
25