Q. If the circles $x^2+y^2+6 x+8 y+16=0$ and $x^2+y^2+2(3-\sqrt{3}) x+x+2(4-\sqrt{6}) y$ $= k +6 \sqrt{3}+8 \sqrt{6}, k >0$ touch internally at the point $P(\alpha, \beta)$, then $(\alpha+\sqrt{3})^2+(\beta+\sqrt{6})^2$ is equal to _______
Solution: