Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If the circle x2 + y2 = a2 intersects the hyperbola xy = c2 in four points P(x1, y1) Q(x2, y2). R(x3, y3) and S(x4, y4) then
Q. If the circle
x
2
+
y
2
=
a
2
intersects the hyperbola
x
y
=
c
2
in four points
P
(
x
1
,
y
1
)
Q
(
x
2
,
y
2
)
.
R
(
x
3
,
y
3
)
and
S
(
x
4
,
y
4
)
then
2142
183
KCET
KCET 2009
Conic Sections
Report Error
A
x
1
+
x
2
+
x
3
+
x
4
=
0
56%
B
y
1
+
y
2
+
y
3
+
y
4
=
2
12%
C
x
1
x
2
x
3
x
4
=
2
c
4
23%
D
y
1
y
2
y
3
y
4
=
2
c
4
8%
Solution:
Given,
x
2
+
y
2
=
a
2
and
x
y
=
c
2
∴
x
2
+
(
x
c
2
)
2
=
a
2
⇒
x
4
−
a
2
x
2
+
c
4
=
0
∴
x
1
+
x
2
+
x
3
+
x
4
=
0