Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If the circle $x^2 + y^2 = a^2$ intersects the hyperbola $xy = c^2$ in four points $ P(x_1, y_1) Q(x_2, y_2). R(x_3, y_3)$ and $S(x_4, y_4)$ then

KCETKCET 2009Conic Sections

Solution:

Given, $x^{2}+y^{2}=a^{2}$ and $x y=c^{2}$
$\therefore \,\,\,\,\,\, x^{2}+\left(\frac{c^{2}}{x}\right)^{2}=a^{2} $
$\Rightarrow \,\,\,\,\,\, x^{4}-a^{2} x^{2}+c^{4}=0 $
$\therefore \,\,\,\,\,\, x_{1}+x_{2}+x_{3}+x_{4}=0$