We have, (2a−3b)n T7=T8 ⇒nC6(2a)n−6(−3b)6=nC7(2a)n−7(−3b)7 ⇒nC6(2a)=nC7(−3b) ⇒3b2a=−nC6nC7 ⇒3b2a=−(n−6)!6!n!(n−7)!7!n! ⇒3b2a=−7n−6 ⇒3b2a=76−n
On applying componendo and dividendo, we get 2a−3b2a+3b=6−n−76−n+7 =−(n+1)13−n =−[n+113−n]