Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If the 7th and 8th term of the binomial expansion (2a - 3b)n are equal, then (2a + 3b/2a - 3b) is equal to
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. If the $7^{th}$ and $8^{th}$ term of the binomial expansion $(2a - 3b)^n$ are equal, then $\frac{2a + 3b}{2a - 3b}$ is equal to
KEAM
KEAM 2017
Binomial Theorem
A
$\frac{13-n}{n+1}$
20%
B
$\frac{n+1}{13-n}$
8%
C
$\frac{6-n}{13-n}$
12%
D
$\frac{n - 1}{13-n}$
24%
E
none of the above
24%
Solution:
We have, $(2 a-3 b)^{n}$
$ T_{7} =T_{8} $
$\Rightarrow { }^{n} C_{6}(2 a)^{n-6}(-3 b)^{6} ={ }^{n} C_{7}(2 a)^{n-7}(-3 b)^{7} $
$ \Rightarrow { }^{n} C_{6}(2 a) ={ }^{n} C_{7}(-3 b)$
$ \Rightarrow \frac{2 a}{3 b} =-\frac{{ }^{n} C_{7}}{{ }^{n} C_{6}}$
$\Rightarrow \frac{2 a}{3 b}=-\frac{\frac{n !}{(n-7) ! 7 !}}{\frac{n !}{(n-6) ! 6 !}} $
$\Rightarrow \frac{2 a}{3 b}=-\frac{n-6}{7} $
$ \Rightarrow \frac{2 a}{3 b}=\frac{6-n}{7}$
On applying componendo and dividendo, we get
$\frac{2 a+3 b}{2 a-3 b}=\frac{6-n+7}{6-n-7}$
$=\frac{13-n}{-(n+1)}$
$=-\left[\frac{13-n}{n+1}\right]$