Q.
If tan−1(1−x),tan−1(x) and tan−1(1+x) are in A.P., then the value of x3+x2 is equal to
4626
187
J & K CETJ & K CET 2010Inverse Trigonometric Functions
Report Error
Solution:
Given that, tan−1(1−x),tan−1x
and tan−1(1+x) are in AP, then 2tan−1x=tan−1(1−x)+tan−1(1+x) ⇒tan−1(1−x22x)=tan−1(1−(1−x)(1+x)1−x+1+x) ⇒tan−1(1−x22x)=tan−1(x22) ⇒1−x22x=x22 ⇒x3=1−x2 ⇒x3+x2=1