Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $ {{\tan }^{-1}}\,(1-x),\,\,{{\tan }^{-1}}\,(x) $ and $ {{\tan }^{-1}}\,(1+x) $ are in $A.P.$, then the value of $ {{x}^{3}}+{{x}^{2}} $ is equal to

J & K CETJ & K CET 2010Inverse Trigonometric Functions

Solution:

Given that, $ {{\tan }^{-1}}\,(1-x),\,\,\,{{\tan }^{-1}}x $
and $ {{\tan }^{-1}}\,(1+x) $ are in AP, then
$ 2{{\tan }^{-1}}x={{\tan }^{-1}}\,(1-x)+{{\tan }^{-1}}\,(1+x) $
$ \Rightarrow $ $ {{\tan }^{-1}}\left( \frac{2x}{1-{{x}^{2}}} \right)={{\tan }^{-1}}\left( \frac{1-x+1+x}{1-(1-x)\,(1+x)} \right) $
$ \Rightarrow $ $ {{\tan }^{-1}}\,\left( \frac{2x}{1-{{x}^{2}}} \right)={{\tan }^{-1}}\left( \frac{2}{{{x}^{2}}} \right) $
$ \Rightarrow $ $ \frac{2x}{1-{{x}^{2}}}=\frac{2}{{{x}^{2}}} $
$ \Rightarrow $ $ {{x}^{3}}=1-{{x}^{2}} $
$ \Rightarrow $ $ {{x}^{3}}+{{x}^{2}}=1 $