Given, sin−1(1+a22a)+cos−1(1+a21−a2)=tan−1(1−x22x) ⇒2tan−1a+2tan−1a=tan−1(1−x22x) [∵sin−1(1+x22x)=2tan−1x and cos−1(1+x21−x2)=2tan−1x] ⇒4tan−1a=tan−1(1−x22x) ⇒2tan−1(1−a22a)=tan−1(1−x22x) (∵2tan−1x=tan−11−x22x) ⇒2tan−1(1−a22a)=2tan−1x
On comparing, we get x=1−a22a