Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $\sin ^{-1}\left(\frac{2 a}{1+a^2}\right)+\cos ^{-1}\left(\frac{1-a^2}{1+a^2}\right)=\tan ^{-1} \frac{2 x}{1-x^2}$, where $a, x \in] 0,1[$, then the value of $x$ is

Inverse Trigonometric Functions

Solution:

Given, $ \sin ^{-1}\left(\frac{2 a}{1+a^2}\right)+\cos ^{-1}\left(\frac{1-a^2}{1+a^2}\right)=\tan ^{-1}\left(\frac{2 x}{1-x^2}\right)$
$ \Rightarrow 2 \tan ^{-1} a+2 \tan ^{-1} a=\tan ^{-1}\left(\frac{2 x}{1-x^2}\right) $
$ {\left[\because \sin ^{-1}\left(\frac{2 x}{1+x^2}\right)=2 \tan ^{-1} x \text { and } \cos ^{-1}\left(\frac{1-x^2}{1+x^2}\right)=2 \tan ^{-1} x\right]} $
$ \Rightarrow 4 \tan ^{-1} a=\tan ^{-1}\left(\frac{2 x}{1-x^2}\right) $
$ \Rightarrow 2 \tan ^{-1}\left(\frac{2 a}{1-a^2}\right)=\tan ^{-1}\left(\frac{2 x}{1-x^2}\right) $
$(\because 2\tan^{-1} x = \tan^{-1} \frac{2x}{1-x^2})$
$ \Rightarrow 2 \tan ^{-1}\left(\frac{2 a}{1-a^2}\right)=2 \tan ^{-1} x$
On comparing, we get
$x=\frac{2 a}{1-a^2}$