Q. If $\sin ^{-1}\left(\frac{2 a}{1+a^2}\right)+\cos ^{-1}\left(\frac{1-a^2}{1+a^2}\right)=\tan ^{-1} \frac{2 x}{1-x^2}$, where $a, x \in] 0,1[$, then the value of $x$ is
Inverse Trigonometric Functions
Solution: