Here, general term Tk=(k+2)k+kk+21
Rationalising the expression, we get, ⇒Tk=k(k+2)2−k2(k+2)(k+2)k−kk+2 ⇒Tk=2k(k+2)(k+2)k−kk+2=21(k1−k+21)
Now, T1=21(11−31), T2=21(21−41), T3=21[31−51] and so on Tk=21(k1−k+21)
Adding all the terms, we get, T1+T2+...Tk=21(1+21−k+11−k+21)
Now, if k→∈fty k=1∑∈ftyTk=21(1+21−0−0) =221+2 81+2=162+4
As, c∈[1,15]⇒c=8,a=1,b=2 ⇒ any other solution is not possible ⇒a+b+c=11