Q. If $\Sigma _{k = 1}^{\infty }\frac{1}{\left(k + 2\right) \sqrt{k} + k \sqrt{k + 2}}=\frac{\sqrt{a} + \sqrt{b}}{\sqrt{c}}$ , where $a,b,c\in N$ and $a,b,c\in \left[1 , 15\right]$ , then $a+b+c$ is equal to
NTA AbhyasNTA Abhyas 2022
Solution: