Q.
If p,q,r,s are in arithmetic progression and
f(x)=∣∣p+sinxq+sinxr+sinxq+sinxr+sinxs+sinxp−r+sinx−1+sinxs−q+sinx∣∣ such that
∫02f(x)dx=−4, then the common difference of the
progession is
Let q=p+d,r=p+2d,s=p+3d ∴f(x)=∣∣p+sinxp+d+sinxp+2d+sinxp+d+sinxp+2d+sinxp+3d+sinx−2d+sinx−1+sinx2d+sinx∣∣
Applying R→R1+R3−2R2, we get f(x)=∣∣0p+d+sinxp+2d+sinx0p+2d+sinxp+3d+sinx2−1+sinx2d+sinx∣∣ =2[(p+d+sinx)(p+3d+sinx) −(p+2d+sinx)2=−2d2
Given ∫02f(x)dx=−4 <br/><br/>⇒∫02(−2d2)dx=−4<br/>⇒d2=1⇒d=±1<br/><br/>