Q. If $p, q, r, s$ are in arithmetic progression and $f(x)=\left|\begin{array}{ccc}p+\sin x & q+\sin x & p-r+\sin x \\ q+\sin x & r+\sin x & -1+\sin x \\ r+\sin x & s+\sin x & s-q+\sin x\end{array}\right|$ such that $\int_{0}^{2} f(x) d x=-4$, then the common difference of the progession is
Integrals
Solution: