Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If p , q , r are in A.P., then the value of |x+4 x+9 x+p x+5 x+10 x+q x+6 x+11 x+r| is
Q. If
p
,
q
,
r
are in A.P., then the value of
∣
∣
x
+
4
x
+
5
x
+
6
x
+
9
x
+
10
x
+
11
x
+
p
x
+
q
x
+
r
∣
∣
is
2049
202
Determinants
Report Error
A
x + 15
7%
B
x + 20
7%
C
x + p + q + r
47%
D
None of these
40%
Solution:
∣
∣
x
+
4
x
+
5
x
+
6
x
+
9
x
+
10
x
+
11
x
+
p
x
+
q
x
+
r
∣
∣
=
∣
∣
0
x
+
5
x
+
6
0
x
+
10
x
+
11
p
−
2
q
+
r
x
+
q
x
+
r
∣
∣
=
0
[
R
1
→
R
1
−
2
R
2
+
R
3
]
[since p + r = 2q, hence all entries in first row become 0.]