Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $p , q , r$ are in A.P., then the value of $\begin{vmatrix}x+4 & x+9 & x+p \\ x+5 & x+10 & x+q \\ x+6 & x+11 & x+r\end{vmatrix}$ is

Determinants

Solution:

$\begin{vmatrix} x+4 & x+9 & x+p \\ x+5 & x+10 & x+q \\ x+6 & x+11 & x+r \end{vmatrix} $
$=\begin{vmatrix} 0 & 0 & p-2 q+r \\ x+5 & x+10 & x+q \\ x+6 & x+11 & x+r \end{vmatrix} =0$
$[R_{1} \to R_{1} -2R_{2}+R_{3}]$
[since p + r = 2q, hence all entries in first row become 0.]