The pair of lines is 6x2−xy+4cy2=0. On comparing with ax2+2hxy+by2=0, we get a=6,2h=−1,b=4c∴m1+m2=−b2h=4c1 and m1+m2=ba=4c6 One line of given pair of lines is 3x+4y=0 Slope of line =−43=m1 (say) ∴−43+m2=4c1⇒m2=4c1+43∴(−43)(4c1+43)=4c6⇒−43(4c1+3c)=4c6⇒−43(4c1+3c)=4c6⇒1+3c=3−6×4⇒1+3c=−8⇒3x=−9⇒c=−3 Alternate Solution ∵3x+4y=0 is one of the two lines. Hence y=−43x will satisfy the equation 6x2−xy+4cy2=0∴6x2−x(4−3x)+4c(4−3x)2=0⇒6x2+43x2+4c169x2=0⇒x2(24+3+9c)=0⇒9c=−27⇒c=−3