Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If one of the lines given by 6x2-xy+4cy2=0 is 3x+4y=0, then c equals:
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. If one of the lines given by $ 6{{x}^{2}}-xy+4c{{y}^{2}}=0 $ is $ 3x+4y=0, $ then c equals:
Jamia
Jamia 2007
A
1
B
$ -1 $
C
3
D
$ -3 $
Solution:
The pair of lines is $ 6{{x}^{2}}-xy+4c{{y}^{2}}=0. $ On comparing with $ a{{x}^{2}}+2hxy+b{{y}^{2}}=0, $ we get $ a=6,2h=-1,b=4c $ $ \therefore $ $ {{m}_{1}}+{{m}_{2}}=-\frac{2h}{b}=\frac{1}{4c} $ and $ {{m}_{1}}+{{m}_{2}}=\frac{a}{b}=\frac{6}{4c} $ One line of given pair of lines is $ 3x+4y=0 $ Slope of line $ =-\frac{3}{4}={{m}_{1}} $ (say) $ \therefore $ $ -\frac{3}{4}+{{m}_{2}}=\frac{1}{4c} $ $ \Rightarrow $ $ {{m}_{2}}=\frac{1}{4c}+\frac{3}{4} $ $ \therefore $ $ \left( -\frac{3}{4} \right)\left( \frac{1}{4c}+\frac{3}{4} \right)=\frac{6}{4c} $ $ \Rightarrow $ $ -\frac{3}{4}\left( \frac{1+3c}{4c} \right)=\frac{6}{4c} $ $ \Rightarrow $ $ -\frac{3}{4}\left( \frac{1+3c}{4c} \right)=\frac{6}{4c} $ $ \Rightarrow $ $ 1+3c=\frac{-6\times 4}{3} $ $ \Rightarrow $ $ 1+3c=-8 $ $ \Rightarrow $ $ 3x=-9\Rightarrow c=-3 $ Alternate Solution $ \because $ $ 3x+4y=0 $ is one of the two lines. Hence $ y=-\frac{3x}{4} $ will satisfy the equation $ 6{{x}^{2}}-xy+4c{{y}^{2}}=0 $ $ \therefore $ $ 6{{x}^{2}}-x\left( \frac{-3x}{4} \right)+4c{{\left( \frac{-3x}{4} \right)}^{2}}=0 $ $ \Rightarrow $ $ 6{{x}^{2}}+\frac{3{{x}^{2}}}{4}+4c\frac{9{{x}^{2}}}{16}=0 $ $ \Rightarrow $ $ {{x}^{2}}(24+3+9c)=0 $ $ \Rightarrow $ $ 9c=-27 $ $ \Rightarrow $ $ c=-3 $