Given n+2C8:n−2P4=57:16 n−2P4n+2C8=1657[∵nCr=r!(n−r)!n!andnPr=(n−r)!n!] ⇒8!(n+2−8)!(n+2)!×(n−2)!(n−2−4)!=1657 ⇒8.7.6.5.4.3.2.1(n+2)(n+1)n.(n−1)=1657 ⇒(n+2)(n+1)n(n−1)=143640 ⇒(n2+n−2)(n2+n)=143640 ⇒(n2+n)2−2(n2+n)+1=143640+1 ⇒(n2+n−1)2=(379)2 ⇒n2+n−1=379[∵n2+n−1>0] ⇒n2+n−1−379=0 ⇒n2+n−380=0 ⇒(n+20)(n−19)=0 ⇒n=−20,n=19 ∵ n is not negative. ∴n=19