Thank you for reporting, we will resolve it shortly
Q.
If n+2C8:n−2P4=57:16, then the value of n is:
Permutations and Combinations
Solution:
Given n+2C8:n−2P4=57:16 n+2C8n−2P4=5716[∵nCr=n!r!(n−r)!andnPr=n!(n−r)!] ⇒(n+2)!8!(n+2−8)!×(n−2−4)!(n−2)!=5716 ⇒(n+2)(n+1)n.(n−1)8.7.6.5.4.3.2.1=5716 ⇒(n+2)(n+1)n(n−1)=143640 ⇒(n2+n−2)(n2+n)=143640 ⇒(n2+n)2−2(n2+n)+1=143640+1 ⇒(n2+n−1)2=(379)2 ⇒n2+n−1=379[∵n2+n−1>0] ⇒n2+n−1−379=0 ⇒n2+n−380=0 ⇒(n+20)(n−19)=0 ⇒n=−20,n=19 ∵ n is not negative. ∴n=19