Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If n>2 and α ,β ,γ ∈ R , then the value of S=α C0-(α + β )C1 +(α + 2 β + 22 γ )C2 -(α + 3 β + 32 γ )C3+.... upto (n + 1) terms is equal to (where, Cr denotes nCr )
Q. If
n
>
2
and
α
,
β
,
γ
∈
R
, then the value of
S
=
α
C
0
−
(
α
+
β
)
C
1
+
(
α
+
2
β
+
2
2
γ
)
C
2
−
(
α
+
3
β
+
3
2
γ
)
C
3
+
....
upto
(
n
+
1
)
terms is equal to
(where,
C
r
denotes
n
C
r
)
1771
212
NTA Abhyas
NTA Abhyas 2020
Binomial Theorem
Report Error
A
0
B
2
n
−
2
γ
C
n
2
2
n
−
2
γ
D
nγ
Solution:
S
=
α
(
C
0
−
C
1
+
C
2
−
C
3
……
)
+
β
(
−
C
1
+
2
C
2
−
3
C
3
+
……
)
+
γ
(
2
2
C
2
−
3
2
C
3
+
……
)
=
α
∑
k
=
0
n
(
−
1
)
k
(
C
k
)
+
β
∑
k
=
1
n
(
−
1
)
k
(
k
C
k
)
+
γ
∑
k
=
2
n
(
−
1
)
k
(
k
2
C
k
)
But,
∑
k
=
0
n
(
−
1
)
k
C
k
=
0
∑
k
=
1
n
(
−
1
)
k
k
C
k
=
d
x
d
(
1
−
x
)
n
∣
∣
x
=
1
=
0
and
∑
k
=
2
n
(
−
1
)
k
k
2
C
k
=
∑
k
=
2
n
(
−
1
)
k
{
k
(
k
−
1
)
+
k
}
C
k
=
∑
k
=
2
n
(
−
1
)
k
k
(
k
−
1
)
C
k
+
∑
k
=
1
n
(
−
1
)
k
k
C
k
+
C
1
=
0
+
0
+
n
=
n
⇒
S
=
α
(
0
)
+
β
(
0
)
+
γ
(
n
)
=
nγ