Q.
If $n>2$ and $\alpha ,\beta ,\gamma \in R$ , then the value of $S=\alpha C_{0}-\left(\alpha + \beta \right)C_{1}$ $+\left(\alpha + 2 \beta + 2^{2} \gamma \right)C_{2}$ $-\left(\alpha + 3 \beta + 3^{2} \gamma \right)C_{3}+....$ upto $\left(n + 1\right)$ terms is equal to
(where, $C_{r}$ denotes $^{n}C_{r}$ )
NTA AbhyasNTA Abhyas 2020Binomial Theorem
Solution: