Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If log 1 / 2( log 8 (x2-2 x/x-3))<0 then x ∈(a1, a2) ∪(a3, a4). The value of (a1+a2+a3) equals
Q. If
lo
g
1/2
(
lo
g
8
x
−
3
x
2
−
2
x
)
<
0
then
x
∈
(
a
1
,
a
2
)
∪
(
a
3
,
a
4
)
. The value of
(
a
1
+
a
2
+
a
3
)
equals
274
104
Complex Numbers and Quadratic Equations
Report Error
A
10
B
11
C
12
D
13
Solution:
lo
g
1/3
(
lo
g
8
x
−
3
x
2
−
2
x
)
<
0
;
lo
g
8
(
x
−
3
x
2
−
2
x
)
>
1
;
x
−
3
x
2
−
2
x
>
8
⇒
x
−
3
(
x
−
6
)
(
x
−
4
)
>
0
⇒
x
∈
(
3
,
4
)
∪
(
6
,
∞
)
⇒
a
1
+
a
2
+
a
3
=
13