Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $\log _{1 / 2}\left(\log _8 \frac{x^2-2 x}{x-3}\right)<0$ then $x \in\left(a_1, a_2\right) \cup\left(a_3, a_4\right)$. The value of $\left(a_1+a_2+a_3\right)$ equals

Complex Numbers and Quadratic Equations

Solution:

$\log _{1 / 3}\left(\log _8 \frac{x^2-2 x}{x-3}\right)<0 ; \log _8\left(\frac{x^2-2 x}{x-3}\right)>1 ; \frac{x^2-2 x}{x-3}>8 \Rightarrow \frac{(x-6)(x-4)}{x-3}>0 $
$\Rightarrow x \in(3,4) \cup(6, \infty) \Rightarrow a_1+a_2+a_3=13$