Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If ∫ ( operatornamecosec2 x/( operatornamecosec x+ cot x)(9)2) d x=( operatornamecosec x- cot x)(7/2)((1/α)+(( operatornamecosec x- cot x)2/11))+C where C is constant of integration and α ∈ N, then α is equal to
Q. If
∫
(
cosec
x
+
c
o
t
x
)
2
9
cosec
2
x
d
x
=
(
cosec
x
−
cot
x
)
2
7
(
α
1
+
11
(
cosec
x
−
c
o
t
x
)
2
)
+
C
where
C
is constant of integration and
α
∈
N
, then
α
is equal to
121
115
Integrals
Report Error
A
5
B
2
7
C
10
D
7
Solution:
I
=
∫
(
cosec
x
+
c
o
t
x
)
9/2
cosec
2
x
d
x
Put
cosec
x
+
cot
x
=
t
⇒
cosec
x
−
cot
x
=
t
1
⇒
(
−
cosec
x
cot
x
−
cosec
2
x
)
d
x
=
d
t
=
∫
t
9/2
2
1
(
t
+
t
1
)
(
t
−
1
)
d
x
=
2
−
1
∫
(
t
9/2
−
1
−
t
13/2
1
)
d
x
=
2
−
1
(
t
7/2
t
⋅
7
2
+
11
⋅
t
11/2
2
)
+
C
⇒
I
=
2
1
⋅
t
7/2
1
(
7
2
+
11
2
(
t
1
)
2
)
+
C
α
=
7